Fractionation, rearrangement and subgenome dominance
نویسندگان
چکیده
MOTIVATION Fractionation is arguably the greatest cause of gene order disruption following whole genome duplication, causing severe biases in chromosome rearrangement-based estimates of evolutionary divergence. RESULTS We show how to correct for this bias almost entirely by means of a 'consolidation' algorithm for detecting and suitably transforming identifiable regions of fractionation. We characterize the process of fractionation and the performance of the algorithm through realistic simulations. We apply our method to a number of core eudicot genomes, we and by studying the fractionation regions detected, are able to address topical issues in polyploid evolution. AVAILABILITY AND IMPLEMENTATION Code for the consolidation algorithm, and sample data, is available at: http://137.122.149.195/Software/Fractionation/fractionation.html CONTACT [email protected].
منابع مشابه
Two evolutionarily distinct classes of paleopolyploidy.
Whole genome duplications (WGDs) occurred in the distant evolutionary history of many lineages and are particularly frequent in the flowering plant lineages. Following paleopolyploidization in plants, most duplicated genes are deleted by intrachromosomal recombination, a process referred to as fractionation. In the examples studied so far, genes are disproportionately lost from one of the paren...
متن کاملAltered patterns of fractionation and exon deletions in Brassica rapa support a two-step model of paleohexaploidy.
The genome sequence of the paleohexaploid Brassica rapa shows that fractionation is biased among the three subgenomes and that the least fractionated subgenome has approximately twice as many orthologs as its close (and relatively unduplicated) relative Arabidopsis than had either of the other two subgenomes. One evolutionary scenario is that the two subgenomes with heavy gene losses (I and II)...
متن کاملBiased Gene Fractionation and Dominant Gene Expression among the Subgenomes of Brassica rapa
Polyploidization, both ancient and recent, is frequent among plants. A "two-step theory" was proposed to explain the meso-triplication of the Brassica "A" genome: Brassica rapa. By accurately partitioning of this genome, we observed that genes in the less fractioned subgenome (LF) were dominantly expressed over the genes in more fractioned subgenomes (MFs: MF1 and MF2), while the genes in MF1 w...
متن کاملSurviving a Genome Collision: Genomic Signatures of Allopolyploidization in the Recent Crop Species Brassica napus.
Polyploidization has played a major role in crop plant evolution, leading to advantageous traits that have been selected by humans. Here, we describe restructuring patterns in the genome of L., a recent allopolyploid species. Widespread segmental deletions, duplications, and homeologous chromosome exchanges were identified in diverse genome sequences from 32 natural and 20 synthetic accessions,...
متن کاملDecomposing Additive Genetic Variance Revealed Novel Insights into Trait Evolution in Synthetic Hexaploid Wheat
Whole genome duplication (WGD) is an evolutionary phenomenon, which causes significant changes to genomic structure and trait architecture. In recent years, a number of studies decomposed the additive genetic variance explained by different sets of variants. However, they investigated diploid populations only and none of the studies examined any polyploid organism. In this research, we extended...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 28 شماره
صفحات -
تاریخ انتشار 2012